Оглавление

4. Планиметрия Читать 0 мин.

4.3. Треугольники

Треугольник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой.

СВОЙСТВА ТРЕУГОЛЬНИКА:

1. Сумма углов в треугольнике равна α + β + γ = 180°.

2. Против большей стороны находится больший угол; против меньшего угла находится меньшая сторона. Отсюда следует, что если:

a < b < c, то α < β < γ и наоборот.

3. Сумма длин двух любых сторон треугольника всегда больше длины третьей стороны:

a + b > c.

Если это правило не выполняется — треугольник не существует.

4. Формулы площади треугольника:

1 (через высоту)

2 (через две стороны и синус угла между ними)

3 (формула Герона)

Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне.

Площадь треугольника равна половине произведения его сторон на синус угла между ними.

Площадь треугольника равна квадратному корню из произведения его полупериметра на разности полупериметра и каждой из его сторон.

5. Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

с² = а² + b² – 2ab · cosγ

6. Теорема синусов: Отношения сторон треугольника к синусам противоположных им углов равны. Это отношение равно 2R, где R — радиус описанной окружности.

7. Внешний угол треугольника — δ, является смежным с одним из внутренних углов (сумма = 180°). Из этого следует, что внешний угол равен сумме двух внутренних, но не смежных с ним, углов треугольника (α + β = δ).

ВИДЫ ТРЕУГОЛЬНИКОВ:

Треугольники бывают:

  • остроугольными (если все его углы острые),
  • тупоугольными (если один из его углов тупой),
  • прямоугольными (если один из его углов прямой).

Треугольник называется:

  • равнобедренным, если две его стороны равны;
  • равносторонним, если все три стороны равны;
  • разносторонним, если все его стороны разные.

ЭЛЕМЕНТЫ ТРЕУГОЛЬНИКА:

БИССЕКТРИСА

Биссектриса ― луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части.

Свойства биссектрисы треугольника:

1. Все три биссектрисы треугольника пересекаются в одной точке. Эта точка — центр вписанной в треугольник окружности.

2. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам.

3. Формулы для биссектрисы треугольника. Если а и b — стороны треугольника, γ — угол между ними, l — биссектриса треугольника, проведённая из вершины этого угла, а а' и b' — отрезки, на которые биссектриса делит третью сторону треугольника, то

МЕДИАНА

Медиана ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Свойства медианы треугольника:

1. Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и точкой пересечения делятся в отношении 2 к 1, считая от вершины.

  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Формула для медианы треугольника. Если стороны треугольника a и b, mc — медиана треугольника, проведённая к стороне c, то

ВЫСОТА

Высота — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).

В зависимости от типа треугольника высота может содержаться:

  • внутри треугольника (для остроугольного треугольника),
  • совпадать с его стороной (являться катетом прямоугольного треугольника),
  • проходить вне треугольника (для тупоугольного треугольника).

Свойства высоты треугольника:

1. Все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.

2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

3. Если в треугольнике две высоты равны, то треугольник — равнобедренный.

4. Если CC₁ и АА₁ — высоты треугольника АВС, то треугольник ВА₁С₁ подобен треугольнику АВС, причём коэффициент подобия равен cos B.

Сложные теоремы:

5. Если Н — точка пересечения высот треугольника AВС, а О — центр его описанной окружности, то отрезок АН вдвое больше расстояния от точки О до середины стороны ВС. То есть AH = 2OM.

6. Если Н — точка пересечения высот треугольника AВС, М — точка пересечения медиан треугольника AВС, а О — центр его описанной окружности, то точки О, H и М лежат на одной прямой (прямая Эйлера), причём точка М лежит на отрезке ОН и ОМ : МН = 1 : 2.

СРЕДИННЫЙ ПЕРПЕНДИКУЛЯР

Срединный перпендикуляр треугольника — прямая, перпендикулярная стороне треугольника и проходящая через его середину.

Все три срединных перпендикуляра треугольника пересекаются в одной точке, которая является центром описанной около треугольника окружности.

СРЕДНЯЯ ЛИНИЯ

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника

Свойства средней линии треугольника:

  • Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине:

MN||BC,MN = 1/2 BC

  • В любом треугольнике три средних линии, при пересечении которых образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2.

ПОДОБИЕ И РАВЕНСТВО ТРЕУГОЛЬНИКОВ

Подобные треугольники

Равные треугольники

Треугольники подобны, если их углы равны. В подобных фигурах сохраняется отношение между соответствующими сторонами и другими линейными величинами (высоты, медианы, биссектрисы и периметры):

Также сохраняется внутреннее отношение длин:

Два треугольника равны, если у них соответствующие стороны равны и соответствующие углы равны (треугольники равны, если их можно совместить наложением).

Признаки подобия треугольников:

1. По двум пропорциональным сторонам и углу между ними:

2.

3. По двум равным углам (тогда и третьи тоже будут равны)

4.

5. По трем пропорциональным сторонам:

Признаки равенства треугольников:

1. По двум сторонам и углу между ними:

2. По стороне и двум прилежащим к ней углам.

3. По трем сторонам.

ОСОБЫЕ ТРЕУГОЛЬНИКИ И ИХ СВОЙСТВА:

«Особенными», то есть обладающими какими — то дополнительными свойствами, считаются:

  • равнобедренный,
  • равносторонний
  • прямоугольный треугольники.

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК

Равнобедренный треугольник ― это треугольник, у которого две стороны равны (АВ = АС).

Равные стороны (АВ и АС) в таком треугольнике называются боковыми, а оставшаяся третья сторона (ВС) ― основанием.

Свойства равнобедренного треугольника:

1. Углы при основании равны (∠АВС = ∠АСВ).

2. Медиана, проведённая к основанию, является биссектрисой и высотой. То есть она не только делит противолежащую сторону пополам (ВМ = МС), но и падает на неё под углом 90°, а кроме того делит угол, из которого выходит, пополам (∠ВАМ = ∠МАС).

Посмотрим на пример конкретной задачи. В равнобедренном треугольнике внешний угол равен 80°, необходимо найти все углы треугольника. Сразу возникает вопрос ― внешний угол при каком угле треугольника? Предположим, что это внешний угол при угле В (с нашего первого рисунка). Но в таком случае выходит, что сам ∠В = 100° (по сумме смежных углов). Значит, и ∠С = 100°, так как треугольник равнобедренный. Но тогда сумма только двух углов получается 200°, чего быть никак не может. Значит, речь идёт о внешнем угле при угле А треугольника. Тогда ∠А = 100°, а ∠В = ∠С = 40°.

РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК

Равносторонний треугольник ― треугольник, у которого все три стороны равны

Свойства равностороннего треугольника:

1. Кроме равенства сторон в таком треугольнике равны и все углы (каждый из которых по 60° ― так как 180°/3 = 60°).

2. Медиана, проведённая из любого угла, будет являться биссектрисой и высотой (другими словами, равносторонний треугольник с любой стороны является равнобедренным).

1. Центры вписанной и описанной окружностей совпадают.

2. Формулы 2 и 3 для площади треугольника превращаются в одну формулу:

— Через синус (так как все стороны равны и каждый угол равен 60°):

— Формула Герона (так как все стороны равны):

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Прямоугольный треугольник ― треугольник, у которого один угол равен 90° (собственно, это и есть прямой угол, дающий название всему треугольнику). Сторона, лежащая против такого угла, называется гипотенузой (АВ), а две другие стороны ― катетами (АС и ВС).

Свойства прямоугольного треугольника:

1. В любом прямоугольном треугольнике гипотенуза всегда больше катета (против большего угла лежит большая сторона, и наоборот).

2. Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов

АВ2 = АС2 + ВС2

Теорема, обратная теореме Пифагора: Если для сторон произвольного треугольника выполняется отношение АВ2= АС2 + ВС2, то треугольник является прямоугольным.

3. Центр описанной вокруг прямоугольного треугольника окружности всегда лежит на середине гипотенузы (доказательство: прямой ∠С становится вписанным, а против вписанного угла в 90° всегда лежит диаметр ― значит, гипотенуза является диаметром).

Высота, проведенная к гипотенузе, разбивает треугольник на два подобных прямоугольных треугольника, каждый из которых подобен исходному треугольнику

4. Высота, проведенная к гипотенузе, равна:

  • Произведению катетов, деленному на гипотенузу

  • Среднему геометрическому из произведений отрезков, на которые гипотенуза делится высотой

5. Медиана, проведенная к гипотенузе равна половине гипотенузы, то есть радиусу описанной около треугольника окружности.

6. Формулы площади прямоугольного треугольника:

1

2

3

Площадь прямоугольного треугольника равна половине произведения его катетов.

Площадь прямоугольного треугольника равна половине произведения гипотенузы на опущенную к ней высоту.

Площадь прямоугольного треугольника равна половине произведения его катета, гипотенузы и синуса угла между ними.

ЗОЛОТОЙ И СЕРЕБРЯНЫЙ ТРЕУГОЛЬНИКИ:

Серебряный треугольник

— треугольник с углами 45°, 45° и 90° (разрубленный по диагонали квадрат)

Отношение сторон в серебряном треугольнике:

Золотой треугольник

— треугольник с углами 30°, 60° и 90°.

Отношение сторон в золотом треугольнике:

Прочитано Отметь, если полностью прочитал текст
Ништяк!

Решено верно

Браво!

Решено верно

Крутяк!

Решено верно

Зачёт!

Решено верно

Чётко!

Решено верно

Бомбезно!

Решено верно

Огонь!

Решено верно

Юхууу!

Решено верно

Отпад!

Решено верно

Шикарно!

Решено верно

Блестяще!

Решено верно

Волшебно!

Решено верно