Оглавление

3. Алгебра Читать 0 мин.

3.11. Формулы тригонометрии

Основные тригонометрические формулы

Пример. Найти значение выражения:

Решение. Применяем основное тригонометрическое тождество в виде:

Пример. Найти значение выражения:

Решение. Из основного тригонометрического тождества следует:

Подставим в выражение:

Тригонометрические формулы суммы и разности двух углов

Пример. Вычислить

Решение.

Пример. .

Решение.

Тригонометрические формулы двойного угла

Пример. Найдите 2cos2α, если sinα = - 0,7.

Решение. Используем формулу косинуса двойного угла: cos2α = 1 – 2sin²α.

Получаем: 2cos2α = 2·(1 – 2sin²α) = 2·(1-2·(-0,7)2) = 2·(1-2·0,49) = 0,04.

Пример. Найдите значение выражения

Решение. Применяем формулу sin2α = 2sinα·cosα:

Формулы понижения степени

Пример. Найти значение выражения $ 3sin^{2}4x $, если $ cos8x=0,5 $

Решение. Используем формулу понижения степени:

Применительно к углам 4x и 8x она будет выглядеть так:

Находим значение выражения:

Тригонометрические формулы произведения

Пример. Вычислить sin 20°·sin 40°, считать, что cos20° = 0,9

Решение. Заметим, что

Формулы суммы и разности тригонометрических функций

Формулы приведения

Формул приведения много, а точнее 32. И все формулы надо знать. К счастью существует простое мнемоническое правило, позволяющее быстро воспроизвести любую формулу приведения.

Каждая формула связывает между собой либо синус с косинусом, либо тангенс с котангенсом. Причём, первая функция либо меняется на вторую, либо нет.

1. В левой части формулы аргумент представляет собой сумму или разность одного из «основных координатных углов»: $ \frac {\pi}{2}, \pi, \frac {3\pi}{2}, 2\pi $ и острого угла $ \alpha $, а в правой части аргумент $ \alpha $

2. В правой части знак перед функцией либо «плюс», либо «минус».

Мнемоническое правило

Достаточно задать себе два вопроса:

1. Меняется ли функция на кофункцию?

Ответ: Если в формуле присутствуют углы $ \frac {\pi}{2} $ или $ \frac {3\pi}{2} $ — это углы вертикальной оси, киваем головой по вертикали и сами себе отвечаем: «Да», если же присутствуют углы горизонтальной оси π или 2π, то киваем головой по горизонтали и получаем ответ: «Нет».

2. Какой знак надо поставить в правой части формулы?

Ответ: Знак определяем по левой части. Смотрим, в какую четверть попадает угол, и вспоминаем, какой знак в этой четверти имеет функция, стоящая в левой части.

Например, sin $ ( \frac {3 \pi}{2} + \alpha ) $.

1) «Меняется функция или нет?»

$ \frac {3\pi}{2} $ — угол вертикальной оси, киваем головой по вертикали: «Да, меняется». Значит, в правой части будет cosα.

2) «Знак?»

Угол $ ( \frac {3 \pi}{2} + \alpha ) $ попадает в IV четверть. Синус в IV четверти имеет знак «минус». Значит, в правой части ставим знак «минус».

Итак, получили формулу, sin $ ( \frac {3 \pi}{2} + \alpha ) = –cosα. $

Пример. Найдите значение выражения

Решение. Используем формулу приведения:

Пример. Найдите значение выражения 5tg17⁰ · tg107⁰.

Решение. Используем формулу приведения:

5tg17⁰ · tg107⁰ = 5tg17⁰·tg(90⁰ + 17⁰) = 5tg17⁰·(−ctg17⁰) = −5(tg17⁰·ctg17⁰) = −5·1 = −5.

Тригонометрический круг

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое. Он заменяет десяток таблиц.

Сколько полезного на этом рисунке!

1. Перевод градусов в радианы и наоборот. Полный круг содержит 360 градусов, или радиан.

2. Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси x, а значение синуса — на оси y.

3. И синус, и косинус принимают значения от –1 до 1.

Тригонометрический круг:

1. Значение тангенса угла α тоже легко найти — поделив sinα на cosα. А чтобы найти котангенс — наоборот, косинус делим на синус.

2. Знаки синуса, косинуса, тангенса и котангенса.

3. Синус — функция нечётная, косинус — чётная.

4. Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен 2π.

Графики тригонометрических функций

На рисунках приведены графики тригонометрических функций: y = sinx, y = cosx, y = tgx, y = ctgx.

1. График функции y = sinx

2. График функции y = cosx

3. График функции y = tgx

4. График функции y = ctgx

Прочитано Отметь, если полностью прочитал текст
Ништяк!

Решено верно

Браво!

Решено верно

Крутяк!

Решено верно

Зачёт!

Решено верно

Чётко!

Решено верно

Бомбезно!

Решено верно

Огонь!

Решено верно

Юхууу!

Решено верно

Отпад!

Решено верно

Шикарно!

Решено верно

Блестяще!

Решено верно

Волшебно!

Решено верно